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ABSTRACT 
We present a short proof of the known theorem that every operator, not of 
the form Xl + compact, where L ~ 0, is a commutator. 

In [2] Brown, Pearcy, and Halmos showed that every compact  operator is a 

commutator .  In [3] Brown and Pearcy showed that operators not of  the form 

"scalar plus compac t"  also are commutators.  The purpose of  this note is to 

present one simple proof  from which both of these results follow. 

We are grateful to A. Brown, P. Fillmore, C. Pearcy, and J. P. Williams for 

their comments and suggestions. 

In the sequel, .~ will denote a separable, infinite dimensional Hilbert space, 

and ~3(~) will denote the algebra of all hounded linear operators acting on .~. 

An operator T is a commutator  if T -- AB - BA, for A,B E ~ ( ~ ) .  The class of  

operators of the form 2 + K where ~. is a nonzero complex number  and K is 

compact will be denoted by (5. When we designate an operator as an n × n 

operator matrix, it is understood that all entries map to and from infinite di- 

mensional spaces, except in a few obvious cases. 

Let T ~ ~ ( ~ ) .  Then the essential numerical range of T, We(T) DEFINITION 1. 

is defined to be 

A W ( T  + K)- 
K 

where the intersection is taken over all compact operators K, W(T) denotes the 

usual numerical range and ( ) -  denotes closure. 

A detailed discussion of the essential numerical range can be found in [5]. We 

will need only a few elementary properties. 

* The second author gratefully acknowledges the support of the National Science Foun- 
dation. 

Received June 25, 1971 

433 



434 J. H. ANDERSON AND J. G. STAMPFLI 

LEMMA 2. Let T ~ ( ~ ) .  Then the following are equivalent. 

a) 2 E We(T). 

b) There is an orthonormal set {e,,} such that (Te.,e.)  ~ ).. 

c) There is a decomposition of ~ as ~1 O ~z  such that 

T __ 

where 2 i ~ 2. 

I 01~2." 0 * i 
L * ! *  

Israel J. Math., 

PROOF. Clearly, (c) =~ (b) =~ (a), so it suffices to show (a) =~ (c). Hence, suppose 

2~ We(T). Then ).E W ( T ) -  so there is a unit vector f~ e.~ such that 21 = (T f l , fO  

and 12 - 2a I < 1. Let M1 = clm{fl,  Tfl ,  T ' f1} .  Let P1 be the projection onto M 1 

and let 1 - P~ = Q~. Note that 

F = PP1 - P1TP1 - PaTQ1 - Q1TP1 

is compact for any complex p and, therefore, 2 ~ W(T  + F) -  = W(itP 1 + Q1TQx)-.  

If  we take #~W(Q1TQ~[Q~3) ,  the last statement and the convexity of 

W(Q1TQa [ QI.~) implies that 2~ W(Q1TQ1 [ Q~.~)-. Thus it follows that there is 

a unit vector f2 ~ m i  L such that 2z = (Tfz,f2) and ] 2 - 22 [ < ½. Having chosen 

f l , ' " , f , ,  we set M, = c l m  {f~,-..,f,, Tf l , . . . ,  Tf,, T * f l , ' " ,  T*f,}. Let P,  be the 

projection onto M,, and let 1 -  P,  = Q,. By the same argument as before, 

2~ W(pP, + Q,TQ,) -  and it follows that there is a unit vector f,+1 ~M~ such 

that ) ~ , + l = ( T f , + l , f , + 0  and I ~ . - ) ~ , + l I < l / ( n + l ) .  Thus, we obtain an 

orthonormal sequence {f,}, such that ( T f , , f , ) =  0 if n ¢ m and ( T f , , f , ) ~  2. 

If we set -~x = elm (f,} and 92 = .~O -~1, it is easy to check that T has the desired 

form. 

COROLLARY. Let c~,flE We(T). Then T can be represented as 

~1/31 0 i )  0~2~2.. 

t. , 

o n ~31 0 ~3 2 = ~3 , 

where {.,} and {fl,} are complex sequences tending to ~ and fl respectively. Note 

that we may take 92 to be infinite dimensional. 
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The corollary is an obvious consequence of the proof of a) ~ c) in Lemma 2. 

LEMMA 3. Let T ~ fB(~3). Then T is compact if  and only if  (T%, %) --. 0 for 

every orthonormal set {e,}. 

PROOF. Note that (Te,, %) ~ 0 if and only if (ReTe,, e,) ~ 0 and (IraTe,, e,) --* 0. 

Thus, we may assume that T is self-adjoint. Furthermore, every self-adjoint 

operator is the difference of two positive operators acting on orthogonal Hilbert 

spaces. Hence, it suffices to consider only positive operators. But if T > 0 and 

(Te,, e , ) ~  0 for every orthonormal set {e,}, then it is obvious from the spectral 

theorem that T is compact. (See [6] chap. 2, §7). The reverse implication is obvious. 

COROLLARY. T e (5 if  and only if  We(T) = {2} for some non-zero complex 2. 

PROOF. We(T ) = {2} if and only if W e ( T -  2 ) =  {0}, and by the lemma 

We(T - 2) = {0} if and only if Te (5. 

REMARK. Lemma 3 also follows from the fact that the essential numerical 

radius is a norm on the Calkin algebra. 

LEMMA 4. Let a ~ b be complex numbers. Then for k sufficiently large 

0 e W(QAQ- 1) where 

In fact any k > 1 + 21 a + b I~ I a - hi will suffice. 

PROOF. Since 

(: k(a b,) 
b ' 

W(QAQ- 1) is the ellipse with foci at a, b and minor axis k(a - b), and it is clear 

that the assertion is true for large k. The last statement follows from an easy 

argument which we omit. 

The next theorem first appeared in [3]. The proofs seem to have little in 

common. 

THEOREM 1. I f  T is not compact and if T is not in (5, then there is an in- 
vertible operator R such that 

RT. :) 
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in an appropriate basis. 

PROOF. By the corollary to Lemma 2 and Lemma 3, T has the form 

"(X 1 

~2 

0 

0 * 

* 

where { e . ) ~  e and {ft.} ~ ft. Let 93l. be the 2-dimensional subspace of ~ such 

that the compression of T to 9J~. is 

a n 0 ) 
o 

By selecting a subsequence, we may assume that 

k = 1 + 2 sup[ . + < ~ .  
n 

Choose Q as in Lemma 4 and set 

I QQQ 0 
R = ". on ]~0)gJ~,GSo =• .  

L 0 1 

Thus, for each n there exists a unit vector h,~93~, such that (RTR-Ih , ,h , )  

= (QTQ-lh,,h,) = 0. Let -~l be the span of the orthonormal set {h,} and let -~2 

be the orthogonal complement of .~ .  Clearly, RTR -~ has the desired form on 

52 @52. 
THEOREM 2. Let K be compact in ~(~).  Then there is an invertible operator 

R such that 

R T R - I = (  0 *) 

PROOF. By Lemma 2 
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K = I 
~ t  "] 

0 e27 * 

[. , • 

where e, ~ 0. Note that if infinitely many of the e, = 0 we are done. I f  this is not 

the case, by passing to a subsequence if necessary, we may assume that {e2, I 

< l e~._l I/2. Then if 

= and Q = - 1 ' A \ 0 e2n 

it follows from Lemma 4 that 0~  W(QAQ-~). We may now argue exactly as in 

the proof of the previous theorem to establish the result. 

The next lemma must be considered a folk theorem. It also appears in the 

guise of equivalence of operators (see [9] §1). It was brought to our attention by 

A. Brown. 

LEMMA 5. Let T be a bounded linear transformation of ~ into ~R (both 

separable Hilbert spaces). Then for suitable decompositions of ~ and ~lt, T has 

the form T = ( ;  O,) (where all factors are infinite dimensional). 

PROOF. If  T has finite rank, there is no difficulty. If rank T is infinite let 

T = VB be the polar decomposition of T where B is a positive operator on .~ and 

V is a partial isometry from .~ to 3 .  Let ~ be a "h a l f "  of range B which reduces 

B. Then ~ =~J~ E) ~JJl ~and ~R = V~JJ~ @ (V~II) _L are the desired decompositions of  

and 3 .  

The following is due to David [4]. 

LEI~A 6. Let T E~(~A) have the form 

( A~ B1 ) 

T = B2 A2 

where A i and B~ are operators for i = 1,2. I f  A 1 and A 2 are commutators, then 

so is T. 

PROOF. Let A, = CiX i - X,Ci for i = 1,2. We claim that 
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T = 0 C2 Y2 X2 - Y2 X2 0 C 2 

where Y1, Y2 and t are still to be chosen. By computat ion we find the right hand 

side is 

C A1 

2Y2 - Y2(C2 + t) 

(C1 + t)Y1 - Y1C2~ 

A 2 J 

Thus, we need only satisfy the equations 

B1 = (C1Y1 - Y1C2) -t- tY1 

B2 = (C2Y2 - Y2C1) - tY2 

to complete the proof. But the map a: ~3(~) ~ ~3(~) defined by ct: T ~ C1T - TC2 

s bounded and hence for t > ll a [I, (~ - t) maps ~3(.~) onto ~3(.~). Thus the above 

equations always have a solution and we are done. 

REMARK. Note that if C, is self-adjoint for i = 1,2 then T = DZ - ZD where 

D is self-adjoint. The same proof  shows that an n x n operator valued matrix is 

a commutator  if  each of the diagonal terms is a commutator .  Furthermore if 

each of the diagonal terms is a commutator  with a self-adjoint factor, then T is 

also a commutator  with a self-adjoint factor. 

THEOREM 3. Let T e ~ ( ~ ) .  I f  Tq~ffJ then T is a commutator. 

PROOF. Clearly any operator similar to a commutator  is a commutator.  Thus, 

in view of Theorems 1 and 2 it suffices to consider operators of  the form 

(0 ,) 
T ~ . 

By applying Lemma 5 to the lower left hand corner (and splitting each entry into 

a 2 by 2 operator matrix) we find i00/ 0o 
T =  - - 2 d -  - -  

0* * 

By a change of basis (2 ~ 3 ~ 4 ~ 2) we obtain 
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I ° * /  • 1 
0 ,  / 

L / ° * J  • 

Now by [10], any operator of the form D = (2 : )  is a commutator. Therefore 

T is a 2 x 2 operator matrix whose diagonal entries are commutators and T itself 

is a commutator by Lemma 6. We will now present another proof of the fact that 

(00 : ) i s a c o m m u t a t o r ; m o r e i n k e e p i n g w i t h t h e s p i r i t o f t h i s p a p e r .  

Apply Lemma 5 to the upper right hand corner of D to obtain 

D = 010 * 

° o • 

Change the basis as before so that 

D = 

O 0l , 1  
o ,p__|  

, ° oj 

Again by Lemma 6, to show that D is a commutator, it is enough to show that 

S =  (0 ,o)is a commutator. Halmos [7] had done this. We recall his extremely 
/ 

0 1 
O1 

brief proof. First write S=  0 . Then S = V k - k V  where V= 

l o ,  

and /~ = [° l R0 

R 0  I 
\ ' a  "aJ 

• (Thus V is the backward shift of infinite multiplicity 

and/~ is the forward weighted shift with each weight equal to the operator R.) 

REMARKS. Note that V * k = k V *  so that S = ( V + V * ) k - k ( V + V * ) .  

Thus, the last part of the proof of Theorem 3 shows that T has a 4 x 4 operator 

matrix such that each element on the diagonal is a commutator with a self-adjoint 
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factor. Hence, by the remarks after Lemma 6, we have actually shown that if T has 

an infinite dimensional 0 compression then T = A X -  XA where A is self- 

adjoint. Thus, every commutator is similar to a commutator with a self-adjoint 

factor. It is shown in [ l ]  that T is a commutator with a self-adjoint factor if and 

only if 0 e We(T). Finally, note that theorems 1, 2 and 3 show that the following 

conditions are equivalent. 

a) T is a commutator. 

b) T~ff i .  

c) T is similar to an operator with an infinite dimensional zero compression. 

Zero compressions played a crucial role in our investigation of commutators. 

The next result characterizes those operators which possess a 2-compression. 

THEOREM 4. Let Tef~(Y)). Then Thasa2-compress ion i.e., T =  (.2 : )  

if  and only if 2 e W(T + F) for  every finite dimensional operator F. (Note that 

we do not take the closure of W(T + F).) 

PROOF. The proof of the " i f "  part of the theorem is implicit in the proof  of 

Lemma 2. The proof  of the reverse implication is easy and we omit it. 

COROLLARY. I f  ). e int We(T) then T has a 2-compression. 

PROOF. Clear. 

Of course T cannot have a ),-compression if 2 ~ We(T).Moreover, it is easy to 

see that an operator may not possess a 2-compression for any 2. (Just consider a 

positive compact operator with dense range). However, we will now exhibit a 

compact operator K such that (Ke,, en) = 0 for each n where {e,} is an orthonormal 

basis for .~ and yet K does not admit a 0-compression. Let Kle, = 2-"e,  and let 

f = ]~n= 02-%n. Then define F by Ff = f and F = 0 on the orthogonal complement 

of {f}. Put K = K 1 -  F. Clearly, (Ke, ,e ,)= 0 for each n and 0 ¢ W(K + F) 

= W(K1). Hence K cannot have a 0-compression by Theorem 4. 

Lastly, we present a proof  of an unpublished result of C. Pearcy. 

THEOREM 5. Let T (E (ft. Let A be an arbitrary operator in 23(9). Then there 

exists an invertible operator Q such that 

*) 
QTQ -I  = , 
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PROOF. By a slight modificat ion o f  the proofs  o f  the corollary to Lemma 3 and 

Theorem 4 it is easy to see that  T is similar to an operator  of  the form 

0o'° • 1 

N o w  consider the operator  

F =  I I -  

Clearly F is idempotent  and thus F is similar to a projection. Since F has infinite 

d imens iona l r ange  and null space it is similar to ( I  0 00). The theorem follows. 

In  closing we ment ion that  commuta tors  in a v o n  N e u m a n n  algebra were 

studied recently in [8]. 
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